Details: |
High-speed atomic force microscopy (HS-AFM) is a unique technology allowing sub-second, nanometric imaging of biological samples [1]. We have adapted HS-AFM to perform high-speed force spectroscopy (HS-FS) both on single molecules and living cells with submicrosecond time resolution [2–6]. In this talk, I will describe the characteristics of modern high-speed AFM and its applications to probe dynamics of biomolecules and living cells, including the required theoretical framework. HS-AFM force measurements open an avenue to better understand the dynamics of biomolecules and cells at previously inaccessible short timescales.
1. T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda, "A high-speed atomic force microscope for studying biological macromolecules," Proceedings of the National Academy of Sciences 98, 12468–12472 (2001).
2. F. Rico, L. Gonzalez, I. Casuso, M. Puig-Vidal, and S. Scheuring, "High-Speed Force Spectroscopy Unfolds Titin at the Velocity of Molecular Dynamics Simulations," Science 342, 741–743 (2013).
3. H. Takahashi, F. Rico, C. Chipot, and S. Scheuring, "α-Helix Unwinding as Force Buffer in Spectrins," ACS Nano 12, 2719–2727 (2018).
4. F. Rico, A. Russek, L. González, H. Grubmüller, and S. Scheuring, "Heterogeneous and rate-dependent streptavidin–biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations," PNAS 116, 6594–6601 (2019).
5. C. Valotteau, F. Sumbul, and F. Rico, "High-speed force spectroscopy: microsecond force measurements using ultrashort cantilevers," Biophys Rev (2019).
6. A. Rigato, A. Miyagi, S. Scheuring, and F. Rico, "High-frequency microrheology reveals cytoskeleton dynamics in living cells," Nat Phys 13, 771–775 (2017). |